An Evolving Type-2 Neural Fuzzy Inference System

نویسندگان

  • Sau Wai Tung
  • Hiok Chai Quek
  • Cuntai Guan
چکیده

There are two main approaches to design a neural fuzzy system; namely, through expert knowledge, and through numerical data. While the computational structure of a system is manually crafted by human experts in the former case, self-organizing neural fuzzy systems that are able to automatically extract generalized knowledge from batches of numerical training data are proposed for the latter. Nevertheless, both of these approaches are static where only parameters of a system are updated during training. On the other hand, the demands and complexities of real-life applications often require a neural fuzzy system to adapt both its parameters and structure to model the changing dynamics of the environment. To counter these modeling bottlenecks, intense research efforts are subsequently channeled into the studies of evolving/online neural fuzzy systems. There are generally two classes of evolving neural fuzzy systems: the Takagi–Sugeno–Kang (TSK) systems and the Mamdani systems. While most existing literature consists of evolving Type-1 TSK-typed and Type-1 Mamdani-typed models, they may not perform well in noisy environment. To improve the robustness of these neural fuzzy systems, recent efforts have been directed to extend evolving Type-1 TSK-typed neural fuzzy systems to Type-2 models because of their better known noise resistance abilities. In contrast, minimum similar effort has been made for evolving Mamdani-typed models. In this paper, we present a novel evolving Type-2 Mamdani-typed neural fuzzy system to bridge this gap. The proposed system is named evolving Type-2 neural fuzzy inference system (eT2FIS), and it employs a datadriven incremental learning scheme. Issues involving the online sequential learning of the eT2FIS model are carefully examined. A new rule is created when a newly arrived data is novel to the present knowledge encrypted; and an obsolete rule is deleted when it is no longer relevant to the current environment. Highly over-lapping fuzzy labels in the input–output spaces are merged to reduce the computational complexity and improve the overall interpretability of the system. By combining these three operations, eT2FIS is ensured a compact and up-to-date fuzzy rule base that is able to model the current underlying dynamics of the environment. Subsequently, the proposed eT2FIS model is employed in a series of benchmark and real-world applications to demonstrate its efficiency as an evolving neural fuzzy system, and encouraging performances have been achieved. 2012 Published by Elsevier Inc. y Elsevier Inc. : +65 6792 6559. . Tung), [email protected] (C. Quek), [email protected] (C. Guan). S.W. Tung et al. / Information Sciences 220 (2013) 124–148 125

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction

This paper introduces a new type of fuzzy inference systems, denoted as dynamic evolving neural-fuzzy inference system (DENFIS), for adaptive online and offline learning, and their application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning, and accommodate new input data, including new features, new classes, etc., through local ...

متن کامل

Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS): On-line learning and Application for Time-Series Prediction

This paper introduces a new type of fuzzy inference systems, denoted as DENFIS (dynamic evolving neural-fuzzy system), for adaptive on-line learning, and its application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning and accommodate new input data, including new features, new classes, etc. through local element tuning. New fuzzy...

متن کامل

Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System

Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...

متن کامل

A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)

Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...

متن کامل

Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams

A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 220  شماره 

صفحات  -

تاریخ انتشار 2010